专利摘要:
埋込型アンテナ(120)を使用して第1の特定の動作周波数範囲および第2の特定の動作周波数範囲で情報を電磁的に伝送するためのシステムおよび方法に関する。一例において埋込型アンテナ(120)は第1の非コイルセグメント(123)および第1のコイルセグメント(122)を含むことができ、第1の特定の動作周波数範囲および第2の特定の動作周波数範囲が、少なくとも一部において、第1の非コイルセグメント(123)に対する第1のコイルセグメント(122)の物理的配置によって設定され得る。
公开号:JP2011514075A
申请号:JP2010548748
申请日:2009-03-03
公开日:2011-04-28
发明作者:ジー. ディオン、フィリップ
申请人:カーディアック ペースメイカーズ, インコーポレイテッド;
IPC主号:H01Q5-01
专利说明:

[0001] 本発明は、埋込型装置用の無線周波数装荷アンテナに関する。
本願は、2008年3月4日に出願された米国特許仮出願第61/033,535号に
ついて優先権の利益を主張し、この仮出願は、参照として本願に組み込まれる。また、本願は2008年8月14日に出願された米国特許仮出願61/088,986号について優先権の利益を主張し、この仮出願は、参照として本願に組み込まれる。]
背景技術

[0002] 医療装置は、体内など体と関係した生理学的情報の監視、検出または感知、生理学的状態または病気の診断、生理学的状態または病気の治療もしくは治療法の提供、器官または組織の機能の回復や修正を含む役割を果たすために体内に埋め込むことができる。埋込型医療装置の例は、心調律管理装置、例えばペースメーカー、心臓再同期治療装置、心臓除細動器もしくは除細動器、神経刺激装置、神経筋刺激装置または薬物送達システムを含むことができる。ある例では埋込型医療装置は、遠隔測定回路と、この遠隔測定回路につながれたアンテナとを含むことができ、両者の組合せは埋込型医療装置と外部装置との間で無線通信を提供するように構成されて、例えば埋込医療装置から情報(例えば生理学的情報または他の情報)を外部装置に送り、または外部装置からの情報(例えばプログラミング命令)を埋込型医療装置において受け取ることができる。]
発明が解決しようとする課題

[0003] 体内の埋込型医療装置と外部装置との間、または体外の埋込型医療装置と外部装置との間で短距離(例えば数センチメートル)の通信を提供するために電磁結合を使用することができる。しかしながら電磁結合通信は主として近接場放射に依拠しており、電磁場分布はアンテナからの距離およびアンテナの向きに強く依存しているが、このことは埋込型医療装置と外部装置との間の無線通信の有効範囲を著しく制限する。]
[0004] 電磁結合の代替として、または電磁結合に加えて電磁結合を上回る範囲を有する低出力無線周波数(RF)通信を使用して、埋込型医療装置と外部装置との間で通信を提供することができる。しかしながら多くのRF通信経路、帯域または周波数は、管理機関または他の規制機関、例えば連邦通信委員会(FCC)または他の監督官庁によって制限されている。そのようなものとして一つのエリアで利用できる周波数は他のエリアでは利用できない。]
[0005] さらに、所望のアンテナ長さは特定の伝送周波数に依存している。ある周波数では所望のアンテナ長さは医療装置の内部に収容するのが困難である。
本発明の課題は、上記従来技術における欠点を取り除くことである。]
課題を解決するための手段

[0006] 本発明者は、何よりも埋込型アンテナを使用して第1の特定の動作周波数範囲および第2の特定の動作周波数範囲で情報を電磁的に無線伝送するためのシステムまたは方法を認識した。ある例では、埋込型アンテナは第1の非コイルセグメントおよび第1のコイルセグメントを含むことができ、第1の特定の動作周波数範囲および第2の特定の動作周波数範囲が、少なくとも一部において、第1の非コイルセグメントに対する第1のコイルセグメントの物理的配置によって設定され得る。]
[0007] 例1において、システムは埋込型遠隔測定回路と、この埋込型遠隔測定回路と電気的に
接続された埋込型アンテナとを含んでおり、埋込型アンテナは第1の非コイルセグメントと、この第1の非コイルセグメントに取り付けられた第1のコイルセグメントとを含み、埋込型アンテナは第1の特定の動作周波数範囲と第2の特定の動作周波数範囲を使用して情報を電磁的に無線伝送するように構成されており、第1の特定の動作周波数範囲および第2の特定の動作周波数範囲が、少なくとも一部において、第1の非コイルセグメントに対する第1のコイルセグメントの物理的配置によって設定される。]
[0008] 例2において、例1の埋込型アンテナは随意に第2の非コイルセグメントに取り付けられた第2のコイルセグメントを含み、例1の第1および第2の特定の動作周波数範囲は、随意に少なくとも一部において、第1のコイルセグメントおよび第1の非コイルセグメントに対する第2のコイルセグメントの物理的配置によって設定される。]
[0009] 例3において、例1から例2のいずれか一以上の埋込型アンテナは随意に第2の非コイルセグメントに取り付けられた第2のコイルセグメントを含み、第2の非コイルセグメントは第2のコイルセグメントと第1のコイルセグメントとの間に設置されており、例1から例2の第1の特定の動作周波数範囲および第2の特定の動作周波数範囲は、随意に少なくとも一部において、第1のコイルセグメント、第1の非コイルセグメントおよび第2の非コイルセグメントに対する第2のコイルセグメントの物理的配置によって設定される。]
[0010] 例4において、例1から例3のいずれか一以上の第1の特定の動作周波数範囲の中心にある第1の中間帯域周波数は、随意に第2の動作周波数の中心にある第2の中間帯域周波数から少なくとも1オクターブだけずれている。]
[0011] 例5において、例1から例4のいずれか一以上の第1および第2の特定の動作周波数範囲は随意に、
(1)約402MHzから約405MHzまで及ぶ埋込型医療用通信サービス(MICS)用帯域
(2)約862MHzから約870MHzまで及ぶ短距離無線機器(SRD)用帯域
(3)約902MHzから約928MHzまで及ぶ第1の医療科学産業(ISM)用帯域(4)約2400MHzから約2500MHzまで及ぶ第2のISM用帯域
のうち少なくとも一つを含むリストから選択されている。]
[0012] 例6において、例1から例5のいずれか一以上の埋込型アンテナの最長の物理的直線寸法は随意に、生体媒質内の埋込型アンテナの最長の特定の動作波長の4分の1に等しいか、それより小さい。]
[0013] 例7において、例1から例6のいずれか一以上の埋込型アンテナが第1および第2の動作周波数範囲の少なくとも一方で示す放射効率は、随意に第1のコイルセグメントが同様の長さの非コイルセグメントによって置き換えられたときに得られるであろう放射効率よりも高い。]
[0014] 例8において、例1から例7のいずれか一以上の第1の非コイルセグメントに対する第1のコイルセグメントの物理的配置は、随意に生体媒質内の埋込型アンテナが、第1および第2の動作周波数範囲の少なくとも一方に対する埋込型遠隔測定回路の出力インピーダンスとの共役整合(conjugate match)を近似するように構成されている。]
[0015] 例9において、例1から例8のいずれか一以上の埋込型遠隔測定回路は、随意に埋込型アンテナに接続されたインピーダンス整合要素を含んでおり、第1のコイルセグメントは整合要素が不連続性誘導子を含むことを要することなく、埋込型遠隔測定回路を誘導的に装荷するように構成されている。]
[0016] 例10において、例1から例9のいずれか一以上の埋込型アンテナが第1および第2の動作周波数範囲の少なくとも一方で示す指向性は、随意に第1のコイルセグメントが同様の長さの非コイルセグメントによって置き換えられたときに得られるであろう指向性よりも少ない。]
[0017] 例11において、例1から例10のいずれか一以上のシステムは、随意に人または動物の体に埋め込むためのサイズと形状に整えた埋込型ハウジングを含み、この埋込型ハウジングは導電材料を有し、埋込型遠隔測定回路の少なくとも一部を収容し、導電材料は埋込型遠隔測定回路に電気的に接続されており、さらに当該システムは人または動物の体に埋め込むためのサイズと形状に整えた埋込型誘電性隔室を含み、この埋込型誘電性隔室は埋込型アンテナの少なくとも一部を収容し、埋込型誘電性隔室はハウジングとつながれている。]
[0018] 例12において、例1から例11のいずれか一以上のシステムは、随意に外部アンテナと、この外部アンテナに電気的に接続された外部遠隔測定回路とを有する外部遠隔測定モジュールを含んでおり、埋込型アンテナと外部アンテナは無線でつながれており、外部アンテナは、第1または第2の特定の動作周波数範囲の少なくとも一方を使用して埋込型医療アセンブリと外部遠隔測定モジュールとの間で情報を電磁的に無線伝送するように構成されている。]
[0019] 例13において、例1から例12のいずれか一以上の第1のコイルセグメントの最長の直線寸法は、随意に第1の非コイルセグメントの最長の直線寸法に等しいか、それより短い。]
[0020] 例14において、本方法は埋込型アンテナを使用して第1の特定の動作周波数範囲および第2の特定の動作周波数範囲で情報を電磁的に無線伝送することを含み、埋込型アンテナは第1の非コイルセグメントと、この第1の非コイルセグメントに取り付けられた第1のコイルセグメントとを含んでおり、第1の特定の動作周波数範囲および第2の特定の動作周波数範囲が、少なくとも一部において、第1の非コイルセグメントに対する第1のコイルセグメントの物理的配置によって設定される。]
[0021] 例15において、例14の埋込型アンテナは随意に、第1のコイルセグメントに取り付けられた第2の非コイルセグメントを含み、埋込型アンテナを使用して情報を電磁的に無線伝送することが第2の非コイルセグメントを使用することを含んでおり、第1の特定の動作周波数範囲および第2の特定の動作周波数範囲が、少なくとも一部において、第1のコイルセグメントおよび第1の非コイルセグメントに対する第2の非コイルセグメントの物理的配置によって設定される。]
[0022] 例16において、例14から例15のいずれか一以上の埋込型アンテナは、随意に第2のコイルセグメントと第1のコイルセグメントとの間に設置される第2のコイルセグメントを含み、埋込型アンテナを使用して情報を電磁的に無線伝送することが第2のコイルセグメントを使用することを含んでおり、第1の特定の動作周波数範囲および第2の特定の動作周波数範囲が、少なくとも一部において、第1のコイルセグメント、第1の非コイルセグメントおよび第2の非コイルセグメントに対する第2のコイルセグメントの物理的配置によって設定される。]
[0023] 例17において、例14から例16のいずれか一以上の情報を電磁的に無線伝送することは、随意に第1の中間帯域周波数を有する第1の特定の動作周波数範囲を使用することを含んでおり、第1の中間帯域周波数が第2の中間帯域周波数から少なくとも1オクター
ブだけずれている。]
[0024] 例18において、例14から例17のいずれか一以上の情報を電磁的に無線伝送することは、随意に第1の非コイルセグメントの最長の直線寸法に等しいか、それより短い第1のコイルセグメントの最長の直線寸法を有する埋込型アンテナを使用することを含む。]
[0025] 例19において、例14から例18のいずれか一以上の方法は、随意に埋込型遠隔測定回路を使用して生体媒質内の埋込型アンテナの共役インピーダンスを実質的に整合することを含む。]
[0026] 例20において、例14から例19のいずれか一以上の実質的に整合することは、コイルセグメントを使用して埋込型遠隔測定回路を誘導的に装荷することを含む。
例21において、例14から例20のいずれか一以上の方法は、随意に埋込型遠隔測定回路を使用して埋込型アンテナを駆動することを含んでおり、埋込型遠隔測定回路は埋込型導電性ハウジング内に収容され、アンテナは導電性ハウジングの外部に設置されており、例14から例20のいずれか一以上の情報を電磁的に無線伝送することが、第1の特定の動作周波数範囲または第2の特定の動作周波数範囲の少なくとも一方を使用して埋込型アンテナと外部遠隔測定モジュールアンテナとの間で情報を電磁的に無線伝送することを含む。]
[0027] 上記の概述は本特許出願の主題の概観を提供することを意図したものである。これは本発明の排他的または包括的な説明を意図したものではない。本特許出願に関するこの他の情報を提供するために詳細な説明が含まれている。]
[0028] 必ずしも縮尺通りに描かれていない図面において、同様の数字は異なる視点で見られた類似の部材を表すことがある。異なる添え字を有する数字は、類似の部材の異なる例を表すことがある。図面は本発明の種々の実施形態を例を用いて一般的に説明するものであり、この例に制限することを意図したものではない。]
図面の簡単な説明

[0029] 埋込型遠隔測定回路および埋込型アンテナを含むシステムの例を一般的に示す図。
一つ以上の外部モジュールと通信中の埋込型遠隔測定回路および埋込型遠隔測定アンテナを含むシステムの例を一般的に示す図。
患者モニターまたはプログラマの少なくともいずれかと通信中の埋込型医療装置(IMD)を含むシステムの例を一般的に示す図。
互いに通信中の、または一つ以上の外部モジュールと通信中の二つ以上の埋込型遠隔測定回路を含むシステムの例を一般的に示す図。
埋込型装荷アンテナ構成の例を一般的に示す図。
少なくとも二つのコイルセグメントを有する埋込型装荷アンテナの例を一般的に示す図。
IMDハウジングおよび種々の埋込型多重周波数アンテナ構成を有するシステムの例を一般的に示す図。
IMDハウジングおよび種々の埋込型多重周波数アンテナ構成を有するシステムの例を一般的に示す図。
IMDハウジングおよび種々の埋込型多重周波数アンテナ構成を有するシステムの例を一般的に示す図。
IMDハウジングおよび種々の埋込型多重周波数アンテナ構成を有するシステムの例を一般的に示す図。
IMDハウジングおよび種々の埋込型多重周波数アンテナ構成を有するシステムの例を一般的に示す図。
IMDハウジングおよび種々の埋込型多重周波数アンテナ構成を有するシステムの例を一般的に示す図。
IMDハウジングおよび種々の埋込型多重周波数アンテナ構成を有するシステムの例を一般的に示す図。
IMDハウジングおよび種々の埋込型多重周波数アンテナ構成を有するシステムの例を一般的に示す図。
IMDハウジングおよび種々の埋込型多重周波数アンテナ構成を有するシステムの例を一般的に示す図。
IMDハウジングおよび種々の埋込型多重周波数アンテナ構成を有するシステムの例を一般的に示す図。
アンテナ放射効率と周波数の関係の例を一般的に示す図。
埋込型アンテナにつながれた遠隔測定回路を含むシステムの例を一般的に示す図。
最長の直線寸法「d」を有する装荷アンテナを含むシステムの例を一般的に示す図。
埋込型アンテナを使用して情報を無線伝送することを含むプロセスの例を一般的に示す図。
埋込型アンテナを使用して情報を無線伝送することを含むプロセスの例を一般的に示す図。
コイルセグメントを有するアンテナの平面における正規化された放射パターンと、コイルセグメントを有しないアンテナの類似の放射パターンとの比較の例を一般的に示す図。]
実施例

[0030] 本発明者は何よりも、コイルセグメントと非コイルセグメントとを含む埋込型アンテナは、実際の物理的長さよりも電気的に長くなる特性を示し、それにより所望の伝送周波数に対してアンテナを物理的により短くできることを認識した。一例において、ここで開示された埋込型アンテナにより物理的なアンテナ長さを所望の伝送周波数に対して所望の動作波長の4分の1未満に短くできる。他の例において、ここに開示された埋込型アンテナは埋込型アンテナにつながれた、または埋込型アンテナを収容する埋込型医療装置(IMD)の外部にある送信器、受信器または送受信器の無線周波数(RF)出力を整合するために使用できる。さらに、本発明者は何よりも、コイルセグメントおよび非コイルセグメントを含む埋込型アンテナは一以上の所望の周波数範囲で動作できることを認識した。ある例において、埋込型アンテナの物理的長さを減らすこと、または一以上の所望の周波数範囲で動作することは、IMDアセンブリの複雑性(例えばサイズ、コスト、部材数など)を低減し、または多様な地理的領域においてその地域のスペクトル利用規則を遵守した動作性能を提供できる。他の例において、一以上の所望の周波数範囲における動作は、ある特定の周波数範囲が利用できない(例えば妨害、劣悪な伝搬特性、機能不良、高いデータエラー率など)場合にバックアップ無線性能を提供する。]
[0031] 図1は埋込型遠隔測定回路115および埋込型アンテナ120を含むシステム100の例を一般的に示す。一例において、システム100は埋込型遠隔測定回路115の少なくとも一部を格納するように構成された埋込型アセンブリハウジング110を含むことができる。一例において、ハウジング110は生体適合性導電材料、例えばチタンから作ることができる。ある例では、埋込型アンテナ120はフィードスルー118を介してハウジング110を通る遠隔測定回路115によって駆動できる。一例において、フィードスルー118はハウジング110が減衰やショートなどでアンテナ120による電磁エネルギー150の放射を変化させるのを防ぐ。] 図1
[0032] 一例において、埋込型アンテナ120は一つ以上の特定の周波数範囲にわたって電磁エネルギー150を放射し、または放射された電磁エネルギー150を受信するように構成されたコイルセグメント122と非コイルセグメント123とを含むことができる。]
[0033] 一例において、埋込型アンテナ120は実質的に埋込型媒質102に取り囲まれたとき、電磁エネルギー150を放射し、または放射された電磁エネルギー150を受信するように構成されている。ある例では埋込型媒質102は、生体媒質、例えば体液、皮膚組織、脂肪組織、筋組織、器官組織、骨または他の生体媒質を含むことができる。一例において、埋込型媒質は人の一部または動物の一部を含むことができる(例えばIMDはペット、家畜などのためのモニターまたは治療送達装置として使用できる)。]
[0034] 図2は、一つ以上の外部モジュール、例えば第1の外部モジュール230A、第2の外部モジュール230Bなどと通信中、例えばRF無線通信中(例えば第1のRF無線通信リンク250A、第2のRF無線通信リンク250Bなどを使用して)の、埋込型遠隔測定回路215と埋込型遠隔測定アンテナ220とを含むシステム200の例を一般的に示す。一例において、埋込型遠隔測定回路215および埋込型遠隔測定アンテナ220を患者202の内部、例えば皮下、筋肉内、胸郭内など患者202の内部に埋め込むことができる。一例において、埋込型アンテナ220は生体適合性誘電材料を含んだ誘電隔室221によって少なくとも部分的に取り囲むことができる(例えば埋込型アンテナ220は隔室221内の空洞部に挿入できるか、または隔室221はアンテナ220を少なくとも一部オーバーモールドすることによって形成できる)。] 図2
[0035] 一例において、第1の外部モジュール230Aまたは第2の外部モジュール230Bは外部遠隔測定回路、例えば第1の外部遠隔測定回路225Aまたは第2の外部遠隔測定回路225Bをそれぞれ含むことができる。ある例では、第1のRF無線通信リンク250AはRF動作周波数の第1の範囲を使って実現でき、第2のRF無線通信リンク250Bは動作周波数の第1の範囲とは異なるRF動作周波数の第2の範囲を使って実現できる。他の例において、第1の外部遠隔測定回路225Aまたは第2の外部遠隔測定回路225Bは、無線通信のために周波数の第1の動作範囲もしくは第2の動作範囲、または両方を使うことができる。ある例では、第1の外部遠隔測定回路225Aまたは第2の外部遠隔測定回路225Bは一つ以上の外部アンテナに電気的に接続されることができる。]
[0036] 図3は、患者モニター331またはプログラマ332の少なくとも一方と通信中、例えばRF無線通信中(例えば第1のRF無線通信リンク350A、第2のRF無線通信リンク350Bなどを使用して)の、埋込型医療装置(IMD)310を含むシステム300の例を一般的に示す。] 図3
[0037] 図3の例において、IMD310は埋込型アンテナ320と電気的に接続された埋込型遠隔測定回路315を含むことができる。図2に関連して行った説明と同様に幾つかの例では、第1のRF無線通信リンク350Aまたは第2のRF無線通信リンク350Bは一つ以上のRF動作周波数範囲を使用できる。そのような例において、単一の埋込型アンテナ320は二つ以上のRF無線動作周波数で動作して、第1のRF無線通信リンク350Aまたは第2のRF無線通信リンク350Bをサポートするように構成できる。] 図2 図3
[0038] 図3の例に従い、埋込型アンテナ320は少なくとも部分的にコネクターブロック321で取り囲むことができる。ある例では、コネクターブロック321は少なくとも部分的に誘電材料で作ることができる。種々の例でコネクターブロック321はIMD310と一つ以上の埋込型リード、例えば第1の埋込型リード312Aまたは第2の埋込型リード312Bとの間の電気的または機械的接続も提供することができる。幾つかの例で、第1の埋込型リード312Aまたは第2の埋込型リード312Bは患者の体302内で種々の
部位に通して、例えば電気的または機械的信号の生理学的監視を提供でき、または電気刺激療法、標的薬物放出または他の治療を提供できる。図3の例において、第1の埋込リード312Aを心臓組織部位303(例えば心内膜部位、心外膜部位、心筋内部位または他の心臓組織部位)に通して、心調律管理療法などの治療を提供でき、または第2の埋込型リード312Bを神経標的304(例えば迷走神経または他の神経標的)に通して、神経刺激療法などの治療を提供できる。] 図3
[0039] ある例では、患者モニター331、プログラマ332、または患者モニター331とプログラマ332との双方は、例えば第1の連結351Aまたは第2の連結351Bを用いてネットワーク352と通信可能に接続できる。一例において、第1の連結351Aまたは第2の連結351Bは有線接続または無線接続を含むことができる。一例において、情報はIMD310から患者モニター331またはプログラマ332に無線伝送でき、次いで患者モニター331またはプログラマ332から第1の連結351Aまたは第2の連結351Bを用いてネットワーク352に伝送できる。]
[0040] 図4は、互いに通信中、例えばRF無線通信中(例えばRF無線通信リンク451を使用して)、または一つ以上の外部モジュール、例えば第1の外部モジュール430A、第2の外部モジュール430Bなどと通信中、例えばRF無線通信中(例えば第1のRF無線通信リンク450A、第2のRF無線通信リンク450Bなどを使用して)の二つ以上の埋込型遠隔測定回路、例えば第1の埋込型遠隔測定回路410A、第2の埋込型遠隔測定回路410Bなどを含むシステム400の例を一般的に示す。] 図4
[0041] 一例において、第1の埋込型遠隔測定回路410Aまたは第2の埋込型遠隔測定回路410Bは相互の無線接続(例えばRF無線通信リンク451を使用して)のために、外部モジュールとの無線接続(例えば第1のRF無線通信リンク450Aまたは第2のRF無線通信リンク450Bを使用して)に使用できるのと同じRF無線通信スキームを使用できる。他の例では、第1の埋込型遠隔測定回路410Aまたは第2の埋込型遠隔測定回路410Bは、相互の無線接続(例えばRF無線通信リンク451を使用して)のために第1のRF無線動作周波数範囲を使用でき、外部モジュールとの無線接続(例えば第1のRF無線通信リンク450Aまたは第2のRF無線通信リンク450Bを使用して)のために第2のRF無線動作周波数範囲を使用できる。ある例では、RF無線通信リンク451は光学リンク、音響リンク、磁気リンク、体内伝導リンクまたは他の通信リンクを含むことができる。]
[0042] 一例において、単一の第1の埋込型アンテナ420Aまたは単一の第2の埋込型アンテナ420Bは複数のRF無線通信周波数範囲で動作するように構成できる。
図5は、ベース装荷アンテナ520A、中間装荷アンテナ520Bおよびエンド装荷アンテナ520Cを含む埋込型装荷アンテナ構成の例を一般的に示す。この例では、各々の埋込型装荷アンテナ構成はコイルセグメントおよび非コイルセグメントを含み、ベース装荷アンテナ520Aはコイルセグメント522Aおよび非コイルセグメント523Aを含み、中間装荷アンテナはコイルセグメント522Bおよび非コイルセグメント523Bを含み、エンド装荷アンテナ520Cはコイルセグメント522Cおよび非コイルセグメント523Cを含む。ある例では、電流分布(current profile)は埋込型装荷アンテナの
全長に沿ったコイルセグメント、例えばコイルセグメント522A、522Bまたは522Cの位置を用いて、各々の埋込型装荷アンテナ構成、例えばベース装荷アンテナ520A、中間装荷アンテナ520Bまたはエンド装荷アンテナ520Cに合わせて調節できる。この例では、ベース装荷アンテナ520Aは電流分布502Aを含み、中間装荷アンテナ520Bは電流分布502Bを含み、エンド装荷アンテナ520Cは電流分布502Cを含む。これらの例では、電流分布502A、502Bまたは502Cは物理的長さ「l
」500を有する埋込型装荷アンテナに沿ったRF電流の相対振幅を一般的に示す。] 図5
[0043] ある例において、コイルセグメント522A、522Bまたは522Cに対する非コイルセグメント523A、523Bまたは523Cの物理的配置は、埋込型装荷アンテナ構成、例えばベース装荷アンテナ520A、中間装荷アンテナ520Bまたはエンド装荷アンテナ520Cの入力インピーダンス、放射効率または放射パターン(例えばアンテナを起点として特定の方向に放出される放射の量、特定の方向からアンテナによって受信される放射の量など)を変化させることができる。]
[0044] 一例において、ベース装荷アンテナ520Aはコイルセグメント、例えばアンテナの駆動点に近い距離に置かれたコイルセグメント522Aを含むことができる。一例において、ベース装荷アンテナ構成は、非コイルセグメント523Aに沿って集中した電流分布502Aをもたらすことができる。電流分布502Aは、ベース装荷アンテナ520Aの全長500に対してベース装荷アンテナ520Aにおける、またはその近傍における共振周波数でのRF電流の相対振幅を一般的に示す。一例において、電流分布502Aは放射領域501Aを含むことができる。放射領域501Aは、電流分布502Aに基づく最大放射強度を有するベース装荷アンテナ520Aの一部を一般的に示す。ある例では、装荷アンテナ、例えばベース装荷アンテナ520Aに沿ったコイルセグメント、例えばコイルセグメント522Aの位置は、装荷アンテナの放射パターンを制御などして変更できる。]
[0045] 一例において、中間装荷アンテナ520Bは中間装荷アンテナ520Bの長さ「l」5
00のほぼ中間に置かれたコイルセグメント、例えばコイルセグメント522Bを含むことができる。一例において、中間装荷アンテナ構成は非コイルセグメント523Bに沿って集中した電流分布、例えば電流分布502Bをもたらすことができる。ある例では、中間装荷アンテナ520Bに沿った電流分布502Bは、非コイルセグメント523Bとほぼ一致した、ベース装荷アンテナ構成の相当する物理的長さの放射領域より短い対応する放射領域501Bを含むことができる。]
[0046] 一例において、エンド装荷アンテナ520Cはアンテナの駆動点から遠い距離に置かれたコイルセグメント、例えばコイルセグメント522Cを含むことができる。一例において、エンド装荷アンテナ構成は非コイルセグメント523Cに沿って集中した電流分布、例えば電流分布502Cをもたらすことができる。ある例では、エンド装荷アンテナ520Cに沿った電流分布523Cは、非コイルセグメント523Cと対応する、中間装荷アンテナ構成の相当する物理的長さの放射領域より短い対応する放射領域501Cを含むことができる。]
[0047] ある例では、図5に示す一つ以上の電流分布、例えば電流分布523A、523Bまたは523Cは一つ以上のコイルセグメント、例えばコイルセグメント522A、522B、522Cなど、または一つ以上の構成、幾何条件、幾何パターン(例えばコイルセグメント中の巻き数、コイルの巻きピッチ、コイルの巻きの回転半径、導体断面など)、または一つ以上の他のパラメータを用いて調節できる。一例において、埋込型装荷アンテナ構成、例えばベース装荷アンテナ520A、中間装荷アンテナ520Bまたはエンド装荷アンテナ520Cの長さ(例えば「l」500)に沿ったピーク電流(例えばピーク放射)
が、埋込型装荷アンテナの一つ以上のコイルセグメントの中心より前または近傍で生じることができるように、一つ以上の電流分布を調節できる。] 図5
[0048] 他の例において、埋込型装荷アンテナ、例えばベース装荷アンテナ520A、中間装荷アンテナ520Bまたはエンド装荷アンテナ520Cは、埋込型装荷アンテナの一つ以上のコイルセグメント、例えばコイルセグメント522A、522Bまたは522Cの幾何学的パラメータを用いて、全方向に放射する(例えばアンテナの向きに関してより一様なアンテナ性能または放射を可能にする)ように設計、調整などして構成できる。一例にお
いて、埋込型装荷アンテナの一つ以上のコイルセグメントのうちの一つ以上の幾何学的パラメータが波長に関して減少するに連れて、指向性放射の範囲は増加できる。]
[0049] 幾つかの例では、埋込型装荷アンテナの一つ以上のコイルセグメント、例えばコイルセグメント522A、522Bまたは522Cは、埋込型装荷アンテナの長さ「l」500
に沿って誘導性装荷を与えるように構成できる(例えば埋込型装荷アンテナの長さ「l」
500に沿って置かれた不連続性誘導子と同様である)。ある例では、追加的なインダクタンスにより、アンテナ、例えばベース装荷アンテナ520A、中間装荷アンテナ520Bまたはエンド装荷アンテナ520Cは、類似の(例えば同様の長さを持つ)装荷されていないアンテナより効率的に放射することができる。そのようなものとして、本発明者は何よりも、一つ以上のコイルセグメント、例えばコイルセグメント522A、522Bまたは522Cを埋込型アンテナに付加すると、所定の放射効率に対して必要とされるアンテナの物理的長さ、例えば「l」500を減らすことができることを認識した。ある例で
はアンテナの物理的長さが減少することにより、IMD内のスペースを節約できる。ある例において放射効率(例えば「η」)は、接続された遠隔測定回路によって埋込型アンテナに供給されるエネルギーに対する放射された電磁エネルギーの比として定義できる。]
[0050] 一例において、埋込型装荷アンテナの一つ以上のコイルセグメント、例えばコイルセグメント522A、522Bまたは522Cからの誘導寄与は、一つ以上のコイルセグメントのないアンテナに対して改善された放射効率を与える。一つ以上のコイルセグメントが含まれる場合、アンテナ構成の物理的長さ「l」500は所望の動作周波数における波長
の4分の1未満であり得る。]
[0051] 一例において、一つ以上のコイルセグメント、例えばコイルセグメント522A、522Bまたは522Cは周波数選択的に動作できる(例えばある周波数の範囲では比較的低いインピーダンスのRF電流を通過させ、他の範囲では比較的高いインピーダンスのRF電流を阻止する)。他の例において、一つ以上のコイルセグメントは周波数に関してインダクタンスまたはキャパシタンスを変化できる。ある例において、埋込型装荷アンテナ、例えばベース装荷アンテナ520A、中間装荷アンテナ520Bまたはエンド装荷アンテナ520Cは、一つ以上のコイルセグメント、例えばコイルセグメント522A、522Bまたは522Cを備えて、動作周波数の第1の特定の範囲において埋込型装荷アンテナは長さ「l」500の一部分、例えば領域501A、501Bまたは501Cに沿って放
射でき、動作周波数の第2の特定の範囲では一つ以上のコイルセグメントが異なるインピーダンスを与えることができ、かつ埋込型装荷アンテナは長さ「l」500の異なる部分
に沿って放射できるように構成され得る。]
[0052] 図6は、少なくとも二つのコイルセグメント、例えば第1のコイルセグメント622Aと第2のコイルセグメント622Bとを有する埋込型装荷アンテナ620の例を一般的に示す。一例において、埋込型装荷アンテナ620は、第1のコイルセグメント622Aおよび第2のコイルセグメント622Bを用いて多重周波数範囲で動作するように構成できる。] 図6
[0053] 幾つかの例において、第1のコイルセグメント622Aおよび第2のコイルセグメント622Bは、第1の特定の動作周波数範囲で低インピーダンスを与えて、RF電流が埋込型装荷アンテナ620の非コイルセグメント、例えば第1の非コイルセグメント623Aまたは第2の非コイルセグメント623Bに流れることができるように構成され得る。一例において、放射領域、例えば第3の放射領域601Cまたは第4の放射領域601Dは、第1のコイルセグメント622Aまたは第2のコイルセグメント622Bを通過したRF電流の振幅がピークに達することのできる、埋込型装荷アンテナ620の一つ以上の部分を表すことができる。ある例では、このピークは放射領域601Cまたは601Dにお
いてより高い効率的放射をもたらすことができる。]
[0054] 他の例において、第1のコイルセグメント622A、第2のコイルセグメント622B、または第1のコイルセグメント622Aと第2のコイルセグメント622Bとの組合せは、第2の特定の動作周波数範囲で高インピーダンスを与えるように構成できる。ある例では、第2の特定の動作周波数範囲における高インピーダンスは、RF電流が埋込型装荷アンテナ620、例えば第2の非コイルセグメント623Bに流れるのを抑止できる。一例において、RF電流を抑止することは、放射がより効率的に起こり得る放射領域、例えば第2の放射領域601Bをもたらすことができる。同様に、一例では第1のコイルセグメント622Aは第3の特定の動作周波数範囲で高インピーダンスを与えるように構成できる。一例において、第3の特定の動作周波数範囲における高インピーダンスはRF電流が第1のコイルセグメント622Aを通って流れるのを抑止でき、第1の放射領域601Aなどの領域でより効率的な放射をもたらす。]
[0055] 従って埋込型装荷アンテナ620は、第1のコイルセグメント622Aまたは第2のコイルセグメント622Bの物理的配置(例えば位置または幾何学的パラメータ)を変化させることによって、動作周波数の二つ以上の所望の範囲で動作する(例えば効率的に動作する)ように構成または調整できる。一例において、第1のコイルセグメント622Aまたは第2のコイルセグメント622Bの物理的配置は、電気的に二つ以上の所望の周波数範囲の各々に対応して異なる電気的長さを持つように現れる、単一の物理的長さ「l」6
00を有する埋込型装荷アンテナ620をもたらすことができる。]
[0056] 幾つかの例では単一の物理的長さ「l」600は、最も低い特定の動作波長の4分の1
未満とすることができる。ある例では最も低い特定の動作波長は最も高い特定の動作周波数に対応することができる。一例において、埋込型装荷アンテナ620は約0.1192メートルの自由空間における波長に対応して最も高い特定の動作周波数2.5GHzを有するように構成できる。0.1192メートルの4分の1は約0.0298メートルである。したがってこの例では、埋込型装荷アンテナ620は自由空間における波長の4分の1より短い、例えばここでは2.5GHzで0.298メートルより短い物理的長さ「l
」600を有することができる。]
[0057] 一般的に、アンテナの所望の長さはアンテナを取り囲む媒質の比誘電率に概ね反比例して変化する。したがって、媒質の比誘電率が増加するに連れて、所望のアンテナ長さは減少する。そのようなものとして、一例において、埋込型装荷アンテナ620が比誘電率25を有する生体媒質に取り囲まれている場合、生体媒質内における埋込型装荷アンテナ620の所望の長さは、概ね比誘電率の逆平方根、この例では5だけ減少する。したがって、この例では埋込型装荷アンテナ620の物理的長さ「l」600は0.006メートル
より短くなることができ、コンパクトなIMDに使用するのに適している。]
[0058] 図7Aから図7JはIMDハウジング(例えば第1のIMDハウジング710A、第2のIMDハウジング710Bなど)および種々の埋込型多重周波数アンテナ構成を含むシステムの例を一般的に示す。これらの例では各々のIMDハウジングは、IMDコネクターブロック(例えば第1のIMDコネクターブロック721A、第2のIMDコネクターブロック721Bなど)につながれ得る。] 図7A 図7J
[0059] 図7Aは、IMDハウジング710A、IMDコネクターブロック721Aおよび埋込型ベース装荷アンテナ720Aを含む埋込型ベース装荷アンテナ構成を一般的に示し、埋込型ベース装荷アンテナ720Aはコイルセグメント722A、非コイルセグメント723Aおよび非コイルフィードセグメント724Aを含んでいる。この例では、埋込型ベース装荷アンテナ720Aのコイルセグメント722AはIMDハウジング710Aの内部
にある。埋込型ベース装荷アンテナ720Aは非コイルフィードセグメント724AでIMDハウジング710Aを貫通し、非コイルセグメント723Aを用いてIMDハウジング710Aに近接したIMDコネクターブロック721Aの基底部分に従って進む。この例では、非コイル部分723AはIMDコネクターブロック721A内に収容されている。幾つかの例では非コイルセグメント723AとIMDハウジング710Aが非常に近接していることにより、非コイルセグメント723AとIMDハウジング710AとのRF連結を強化できる。本発明者は何よりも、そのような連結はIMDハウジング710Aおよび非コイルセグメント723Aが大きく変化する誘電率または導電率を有する埋込型媒質によって取り囲まれている場合はアンテナ放射効率を低減することがあるが、アンテナインピーダンス安定性を改善できる(例えばコネクターブロック721Aの誘電特性はアンテナ放射効率を犠牲にしても優勢となることができる)ことを認識した。] 図7A
[0060] 図7BはIMDハウジング710B、IMDコネクターブロック721Bおよび埋込型ベース装荷アンテナ720Bを含む埋込型ベース装荷アンテナ構成を一般的に示し、埋込型ベース装荷アンテナ720Bはコイルセグメント722B、第1の非コイルセグメント723B、非コイルフィードセグメント724Bおよび第2の非コイルセグメント726Bを含んでいる。この例では、非コイルフィードセグメント724BはIMDハウジング710Bを貫通し、IMDコネクターブロック721Bの基底部分に沿ってコイルセグメント722Bとつながれている。図7Bの例において、コイルセグメント722Bは鋭い屈曲部を介して第2の非コイルセグメント726Bに接続できる。ある例で第2の非コイルセグメント726BはIMDコネクターブロック721Bの垂直縁部に沿った輪郭に従って進むことができ、第2の非コイルセグメント726BはIMDコネクターブロック721Bの上縁部に沿って第1の非コイルセグメント723Bに接続できる。この例では、第1の非コイルセグメント723B、第2の非コイルセグメント726Bおよびコイルセグメント722Bは、IMDコネクターブロック721B内に収容できる。] 図7B
[0061] 幾つかの例では、非コイルセグメント723BとIMDコネクターブロック721Bの縁部とが非常に近接していることにより、放射効率の向上をもたらすことができる。しかしながら、本発明者は何よりも、非コイルセグメントがコネクターブロック、例えばIMDコネクターブロック721Bの縁部に近くなるようにアンテナの一部が構成されていると、例えば埋込型ベース装荷アンテナ720Bまたは他のアンテナのインピーダンスまたは放射効率が、埋込型媒質の誘電率または埋込型媒質の導電率の変化により強く依存するようになる境界点が存在することを認識した。]
[0062] 図7CはIMDハウジング710C、IMDコネクターブロック721Cおよび埋込型中間装荷アンテナ720Cを含む埋込型中間装荷アンテナ構成を一般的に示し、埋込型中間装荷アンテナはコイルセグメント722C、非コイルセグメント723Cおよび非コイルフィードセグメント724Cを含んでいる。この例では、非コイルフィードセグメント724CはIMDハウジング710Cを貫通し、IMDコネクターブロック721Cの基底部分に沿ってコイルセグメント722Cとつながれている。図7Cの例で、非コイルセグメント723Cはコネクターブロック721Cの基底部分に沿ってコイルセグメント722Cにつながれる。一例において、非コイルセグメント723Cおよびコイルセグメント722CはIMDコネクターブロック721C内に収容できる。] 図7C
[0063] 図7Dは、IMDハウジング710D、IMDコネクターブロック721Dおよび埋込型ベース装荷アンテナ720Dを含む埋込型ベース装荷アンテナ構成を一般的に示し、埋込型ベース装荷アンテナ720Dはコイルセグメント722D、非コイルセグメント723Dおよび非コイルフィードセグメント724Dを含んでいる。この例では非コイルフィードセグメント724DはIMDハウジング710Dを貫通し、コネクターブロック721Dの垂直縁部に沿った輪郭に従うコイルセグメント722Dに接続されている。ある例
では、非コイルフィードセグメント724Dはコイルセグメント722Dに接続される前に第2の非コイルセグメント(図示せず)につながれる。図7Dの例では、コイルセグメント722Dはコネクターブロック721Dの上縁部に沿って延びるように構成された非コイルセグメント723Dに接続できる。一例において、非コイルセグメント723Dおよびコイルセグメント722DはIMDコネクターブロック721D内に収容できる。] 図7D
[0064] 図7EはIMDハウジング710E、IMDコネクターブロック721Eおよび埋込型中間装荷アンテナ720Eを含む埋込型中間装荷アンテナ構成を一般的に示し、埋込型中間装荷アンテナ720Eはコイルセグメント722E、第1の非コイルセグメント726E、第2の非コイルセグメント723Eおよび非コイルフィードセグメント724Eを含んでいる。この例では非コイルフィードセグメント724EはIMDハウジング710Eを貫通し、コネクターブロック721Eの基底部分に沿って第1の非コイルセグメント726Eに接続されている。一例において、第1の非コイルセグメント726Eは実質的にIMDコネクターブロック721E内に収容できるが、フィード点と反対側の端部でIMDコネクターブロック721Dを貫通できる。図7Eの例では、第1の非コイルセグメント726Eはコイルセグメント722Eに接続できる。コイルセグメント722EはIMDハウジング710Eの外輪郭に従うように構成でき、さらに第2の非コイルセグメント723Eに接続などしてつながれる。] 図7E
[0065] ある例では、第2の非コイルセグメント723Eおよびコイルセグメント722EはIMDハウジング710Eを取り囲む媒質に直接露出できる。一例でこの露出の結果、アンテナを取り囲む埋込型媒質の空気に対する誘電特性または導電特性に依存してアンテナの放射効率またはインピーダンスは著しく変化し得る。しかしながら本発明者は他の何よりも、このような露出構成により、IMDハウジング710Eによる装荷効果の減少に基づいて放射効率が高くなることを認識した。他の例では、第2の非コイルセグメント723Eおよびコイルセグメント722Eを、生体適合性誘電膜、例えばポリエーテルエーテルケトン、ポリイミドまたは他の生体適合性誘電膜もしくは材料で取り囲むことができる。ある例では、IMDコネクターブロック721Eの外部にある埋込型中間装荷アンテナ720Eの選択された領域を組織に露出させることができる。]
[0066] 幾つかの例において、第2の非コイルセグメント723Eを別個の誘電隔室内に収容して、第2の非コイルセグメント723EとIMDハウジング710Eとの間の特定の距離を維持することができる。一例で誘電性隔室はIMDコネクターブロック721Eと同じ材料、例えば生体適合性ポリマー材料から作ることができる。]
[0067] 図7FはIMDハウジング710F、IMDコネクターブロック721Fおよび埋込型ベース装荷アンテナ720Fを含む埋込型ベース装荷アンテナ構成を一般的に示し、埋込型ベース装荷アンテナ720Fはコイルセグメント722F、非コイルセグメント723Fおよびフィードセグメント724Fを含んでいる。一例においてフィードセグメント724Fはコイルフィードセグメントまたは非コイルフィードセグメントを含むことができる。この例ではフィードセグメント724FはIMDハウジング710Fを貫通でき、IMDコネクターブロック721F内に収容されたコイルセグメント722Fに接続されている。一例において、コイルセグメント722Fは非コイルセグメント723Fに接続でき、非コイルセグメント723FはIMDコネクターブロック721Fの基底部に沿って延びることができる。ある例では非コイルセグメント723Fは部分的にコネクターブロック721F内に収容でき、コネクターブロック721Fを貫通するか、またはハウジング710Fの外輪郭に従うことができる。] 図7F
[0068] 図7GはIMDハウジング710G、IMDコネクターブロック721Gおよび埋込型エンド装荷アンテナ720Gを含む埋込型エンド装荷アンテナ構成を一般的に示し、埋込
型エンド装荷アンテナ720Gは第1の非コイルセグメント726G、コイルセグメント722G、第2の非コイルセグメント723Gおよびフィードセグメント724Gを含んでいる。一例でフィードセグメント724GはIMDハウジング710Gを貫通し、IMDコネクターブロック721Gのコーナーの鋭い屈曲部を介して第1の非コイルセグメント726Gにつながれる。図7Gの例では、第1の非コイルセグメント726GはIMDコネクターブロック721Gの垂直縁部の輪郭に従い、IMDコネクターブロック721Gの垂直縁部とIMDコネクターブロック721Gの上縁部との交点において鋭い屈曲部を形成できる。ある例では、コイルセグメント722Gは第1の非コイルセグメント726Gに接続でき、そしてコイルセグメント722GはIMDコネクターブロック721Gの上縁部に沿って第2の非コイルセグメント723Gに接続できる。] 図7G
[0069] 図7HはIMDハウジング710H、IMDコネクターブロック721Hおよび埋込型エンド装荷アンテナ構成720Hを含む埋込型エンド装荷アンテナ構成を一般的に示し、埋込型エンド装荷アンテナ構成720Hは非コイルセグメント723H、コイルセグメント722Hおよびフィードセグメント724Hを含んでいる。一例においてフィードセグメント724HはIMDハウジング710Hを貫通し、非コイルセグメント723Hに接続されている。この非コイルセグメントは部分的にIMDコネクターブロック721H内に収容されている。ある例では、コイルセグメント722Hは埋込型エンド装荷アンテナ720Hの遠端部で非コイルセグメント723Hに接続できる。] 図7H
[0070] 図7IはIMDハウジング7101、IMDコネクターブロック721Iおよび埋込型中間装荷アンテナ720Iを含む埋込型中間装荷アンテナ構成を一般的に示し、埋込型中間装荷アンテナ720Iは第1の非コイルセグメント726I、コイルセグメント722I、第2の非コイルセグメント723Iおよびフィードセグメント724Iを含んでいる。一例において、フィードセグメント724Iはフィード点でIMDハウジング710Iを貫通し、第1の非コイルセグメント726Iに接続されている。一例において、第1の非コイルセグメント726IはIMDコネクターブロック721Iを貫通できる。ある例では、フィードセグメント724Iはコイルセグメント722Iに接続でき、このコイルセグメント722IはIMDコネクターブロック721Iの外部に設置されており、コイルセグメント722Iは第2の非コイルセグメント723Iに接続できる。] 図7I
[0071] 図7Jは、IMDハウジング710J、IMDコネクターブロック721Jおよび埋込型中間装荷アンテナ720Jを含む埋込型中間装荷アンテナ構成を一般的に示し、埋込型中間装荷アンテナ720Jは第1の非コイルセグメント726J、コイルセグメント722J、第2の非コイルセグメント721Jおよびフィードセグメント724Jを含んでいる。一例において、フィードセグメント724JはIMDハウジング710Jを貫通でき、IMDコネクターブロック721Jの下部に沿って延びる第1の非コイルセグメント726Jに接続できる。図7Jの例ではコイルセグメント722JはIMDコネクターブロック721Jの垂直縁部に沿って設置され、IMDコネクターブロック721Jの上縁部に沿って設置される第2の非コイルセグメント723Jに接続できる。幾つかの例では、フィードセグメント724J、第1の非コイルセグメント726J、コイルセグメント722Jまたは第2の非コイルセグメント723Jの少なくとも一つの長さをほぼ等しくできる。] 図7J
[0072] 図7Aから図7Jの例で、一つ以上のコイルセグメント、例えばコイルセグメント722Aなどの長さは一つ以上の非コイルセグメント、例えば非コイルセグメント723Aなどの長さに等しいかまたはより短くできる。幾つかの例では一つ以上のフィードセグメント、例えば非コイルフィードセグメント724AなどはIMDハウジング、例えばIMDハウジング710Aなどの上縁部を貫通でき、その上縁部ではIMDコネクターブロック、例えばIMDコネクターブロック721Aなどが機械的または電気的にIMDハウジン
グにつながれている。幾つかの例において、一つ以上のフィードセグメントがIMDハウジングの側部を通ってIMDハウジングを貫通できる。] 図7A 図7J
[0073] 図8はアンテナ放射効率810と周波数820との関係800の例を一般的に示す。垂直軸805にアンテナ放射効率810(「η」)を周波数820に対してプロットできる。一例においてアンテナ放射効率810は、特定の最小放射効率815(「ηMIN」)の上方に二つ以上の領域を有する多重周波数アンテナに対して提供され得る。この例では第1の動作周波数範囲は第1の下方周波数限界802Af1Lと、アンテナ放射効率810が特定の最小放射効率815に等しいかまたはそれより大きい第1の上方周波数限界804Bf1Hを定義することによって特定できる。第1の中間帯域周波数803Af1は、ほぼ第1の放射効率ピーク801Aが発生し得る場所で定義され得る。] 図8
[0074] 同様に、図8の例において第2の動作周波数範囲は第2の下方周波数限界802Bf2Lと、アンテナ放射効率810が特定の最小放射効率815に等しいかまたはそれより大きい第2の上方周波数限界804Bf2Hを定義することによって特定できる。第2の中間帯域周波数803Bf2は、ほぼ第1の放射効率ピーク801Bが発生し得る場所で定義され得る。] 図8
[0075] 幾つかの例では、第1の放射効率ピーク801Aまたは第2の放射効率ピーク801Bは、多重周波数アンテナが共振周波数かまたはその近傍で動作するときに発生し得る。
一例において、多重周波数アンテナは第1の周波数範囲約f1L=375MHzおよびf1H=425MHzと、第1の中間帯域周波数803A約f1=400MHzにわたって動作するように構成できる。この例では多重周波数アンテナは第2の周波数範囲約f2L=850MHzおよびf2H=900MHzと、第2の中間帯域周波数803B約f2=875MHzにわたって動作するように構成できる。]
[0076] 他の例において、多重周波数アンテナは第1の周波数範囲約f1L=900MHzおよびf1H=950MHzと、第1の中間帯域周波数803A約f1=925MHzにわたって動作するように構成できる。この例では多重周波数アンテナは第2の周波数範囲約f2L=2.4GHzおよびf2H=2.5GHzと、第2の中間帯域周波数803A約f2=2.45GHzにわたって動作するように構成できる。]
[0077] ある例では、多重周波数アンテナは、
(1)短距離無線機器(SRD)帯域範囲(例えば862〜870MHz)
(2)第1の医療科学産業(ISM)帯域範囲(例えば902〜928MHz)
(3)第2の医療科学産業(ISM)帯域範囲(例えば2.4〜2.5GHz)
(4)埋込型医療用データ伝送システム(MICS)帯域範囲(例えば402〜405MHz)
(5)IMDと他の一つ以上の埋込型装置または外部装置との間の通信用に構成された一つ以上の他の周波数帯域範囲
のうちの少なくともいずれか2つで動作するように構成できる。]
[0078] 図9はアンテナ901につながれた遠隔測定回路915を含むシステム900の例を一般的に示す。ある例では遠隔測定回路915は部分的または完全にハウジング910、例えばIMDハウジング内において包囲される。] 図9
[0079] 幾つかの例において、ハウジング910は導電材料から作ることができ、遠隔測定回路915は第2の電気的接続940Bを用いてハウジングに電気的に接続できる(例えばアンテナRF電流の遠隔測定送受信器917への帰還経路は第1の電気的接続940Aまたは第2の電気的接続940Bを用いて提供することができる)。]
[0080] 図9に示す例において、遠隔測定回路915のための第2のRF入力/出力ライン920Bはフィードスルー918に電気的に接続できる。フィードスルー918はハウジング910を貫通して、第1の非コイルセグメント924を駆動できる。図9に示す例で、第1のコイルセグメント922は第1の非コイルセグメント924に接続でき、第1のコイルセグメント922は第2の非コイルセグメント923に接続して、例えば埋込型中間装荷アンテナを形成できる。] 図9
[0081] 図9に示すアンテナから第1のコイルセグメント922を省略して同様の長さの非コイルセグメントで置き換える例において、アンテナはフィードスルー918を通してアンテナ901内に入る第2のRF入力/出力ライン920Bで遠隔測定回路915に容量性装荷を与えることができる。幾つかの例では、アンテナ901の過剰なインダクタンスまたはキャパシタンスを補償するためにインピーダンス整合要素916を含めることができる。第1のコイルセグメント922を省略した例では、インピーダンス整合要素916は不連続性誘導子を含むことができる。図9の例において、第1のコイルセグメント922は遠隔測定回路915内のインピーダンス整合要素916の価値を減じるか、またはその必要性をなくすことができる。] 図9
[0082] 幾つかの例では、得られた周波数によるアンテナ901への出力伝送は、第1のRF入力/出力ライン920Aとアンテナ901との間に共役インピーダンス整合を提供することにより向上できる。一例において、アンテナ901はフィードスルー918を通してアンテナ内に入る入力インピーダンスの50オームの現実的部分を持つことができる。この例では、第1のコイルセグメント922はアンテナから省略されて同様の長さの非コイルセグメントで置き換えられており、アンテナは約−j20オームのインピーダンスの仮想的部分を有することができる(例えばアンテナは遠隔測定回路915に容量装荷を与えることができる)。]
[0083] 一例において、共役インピーダンス整合を達成するために、第1のRF入力/出力ライン920Aおよび第2のRF入力/出力ライン920Bの寄与分を無視して、インピーダンス整合要素916を用いて遠隔測定送受信器917の出力インピーダンスに約+j20オームの誘導寄与を提供し、アンテナ901のキャパシタンスをほぼ相殺することができる。]
[0084] 他の例では、第1のコイルセグメント922をアンテナ901に含めることができ(例えば図9に示されているように誘導装荷を与えるため)、アンテナキャパシタンスを補償してフィードスルー918でアンテナ内に入るほぼ現実的な入力インピーダンス(例えば仮想的成分がない)を与えることができる。この例では、インピーダンス整合要素916を省略するか、または純粋に抵抗性の整合要素916と置き換えることができる(例えばアンテナ901と遠隔測定送受信器917の出力インピーダンスとの間に実質的に抵抗性の不整合が存在し得る)。] 図9
[0085] 一つの例において、アンテナが多重周波数で動作する場合、整合要素916を用いて第1の動作周波数範囲で強化された共役整合を与えることができ、第1のコイルセグメント922からのインピーダンス整合寄与は第1の動作周波数範囲において最小であり得る。同様に一例において、整合要素916からのインピーダンス整合寄与は第2の動作周波数範囲で最小であり得、第1のコイルセグメント922からのインピーダンス整合寄与を用いて強化された共役整合を与えることができる(例えば整合要素916は高力率自己共振周波数で動作するならば、容量性成分または誘導性成分としてよりも抵抗要素として現れることができる)。]
[0086] アンテナが多重周波数で動作する一例において、整合要素916は第1のRF入力/出力ライン920Aと第2のRF入力/出力ライン920Bとの間の送受信経路から制御可能に切り替えることができる。ある例では一つ以上の特定の動作周波数範囲で近似の共役整合を提供するために、整合要素916に対して一つ以上の価値を選択できる。]
[0087] 図10は、最長の直線寸法「d」1026を有するアンテナ1001(例えば多重周波数装荷アンテナ)を含むシステム1000の例を一般的に示す。一例において、最長の直線寸法1026は、最初に第1の基端位置1020Aと末端位置1020Bを特定し、この末端位置1020Bはアンテナ1001の長さに沿って基端位置1020Aから最も離れた位置を含み、次にここではアンテナフィード1018における基端位置1020Aと末端位置1020Bとの距離を測定することによって決定できる。] 図10
[0088] 一例(図7Jの例と同様)において、ハウジング1010はフィードスルー、例えばアンテナフィード1018においてコネクターブロック1021の基底部に沿って延びる第1の非コイルセグメント1024により貫通できる。第1のコイルセグメント1022は第1の非コイルセグメント1024に接続でき、コネクターブロック1021の上部に沿って設置される第2の非コイルセグメント1023に接続できる。] 図7J
[0089] この例では、第1のリード接続部1030Aと第2のリード接続部1030Bとによって占められるスペースがアンテナ1001によって妨害されないので、アンテナ1001はコネクターブロック1021の内部容積をより効率的に使用できる。一例において、IMDは第1または第2のリード接続部1030A、1030Bを収容するために所定のコネクターブロック1021の容積を必要とするが、第1のリード接続部1030Aの上方をわずかに拡張して、コネクターブロック1021の上縁部に沿って第2の非コイルセグメント1023を収容することができる。]
[0090] ある例では、コネクターブロック1021のサイズを拡張することにより、アンテナの一部として別個の誘電ハウジングを提供する必要性を低減するか、またはなくすことができる。幾つかの例において、第1のコイルセグメント1022の向きは垂直、水平、斜めであるか、または第1のリード接続部1030Aと第2のリード接続部1030B、またはハウジング1010内に収容されているその他の回路の相互接続を回避するための曲線経路に従うことができる。一例において、第1のコイルセグメント1022、第1の非コイルセグメント1024または第2の非コイルセグメント1023の向き、幾何条件または他のパラメータは、図5または図7Aから図7Jにおける論述と同様に、一つ以上の動作周波数範囲にわたり所望のアンテナインピーダンスまたは増大した放射効率を達成するように決めることができる。] 図5 図7A 図7J
[0091] 幾つかの例では、図5、図6、図7、図9または図10で論じた例と同様に、第1のコイルセグメント1022または他のコイルセグメントは巻線から形成または作成でき、所望のアンテナ形状を達成するためにリボン形導体または他の一つ以上の導体から形成できる。] 図10 図5 図6 図9
[0092] 他の例において、図5、図6、図7、図9または図10で論じた例と同様に、アンテナ1001は巻線から形成または作成でき、所望のアンテナ形状を達成するためにリボン形導体(例えば方形または他の断面形状など)または他の一つ以上の導体から形成できる。幾つかの例において埋込型アンテナは平面構造(例えばプリント回路基板またはIMDハウジング)で実現できる。] 図10 図5 図6 図9
[0093] ある例において、アンテナ1001の一つ以上のセグメントに使用される導体はプラチナ、イリジウム、金、銀、銅、錫、アルミニウム、鋼、これらの金属の組合せまたは一つ
以上の他の導体を含むことができる。一例において、アンテナ1001または埋込型遠隔測定回路の一つ以上の部分が組織と接触する場合は、生体適合性導電材料、例えばプラチナとイリジウムの合金などを使用できる。]
[0094] 幾つかの例では、装荷または多重周波数動作は一つ以上のコイルセグメントを一つ以上の他のアンテナタイプ(例えばヘリカルアンテナ、スパイラルアンテナ、フラクタルアンテナ、蛇行アンテナ、逆F型アンテナ、パッチアンテナまたはその他のアンテナタイプ)を挿入することによって達成できる。幾つかの例において、コイルセグメントは平面構造、例えばプリント回路基板上で実現でき、一つ以上の誘電スラブによって分離された1層以上の金属を占めることができる。]
[0095] 図11Aは埋込型アンテナを使用して情報を無線伝送するプロセス1100の例を一般的に示す。1105において埋込型アンテナを使用して第1の特定の動作周波数範囲および第2の特定の動作周波数範囲で情報が電磁的に無線伝送される。一例において、埋込型アンテナはサイズおよび形状などを人または動物の体に埋め込めるように構成されたアンテナ、例えば埋込型アンテナ120またはその他の埋込型アンテナを含むことができる。] 図11A
[0096] 一例において、第1の特定の動作周波数範囲および第2の特定の動作周波数範囲を少なくとも一部は埋込型アンテナの物理的な向きによって提供することができる。ある例では、埋込型アンテナは第1の非コイルセグメントおよび第1のコイルセグメントを含むことができる。一例において、第1の非コイルセグメントは第1のコイルセグメントに取り付けなどして接続できる。一例において、第1の特定の動作周波数範囲および第2の特定の動作周波数範囲が、少なくとも一部において、第1の非コイルセグメントに対する第1のコイルセグメントの物理的配置によって提供することができる。]
[0097] 他の例において、埋込型アンテナは一つ以上の他のコイルセクションまたは非コイルセクション、例えば第2のコイルセクション、第2の非コイルセクションなどを含むことができる。従って、第1の特定の動作周波数範囲および第2の特定の動作周波数範囲は少なくとも一部において、第1のコイルセグメント、第1の非コイルセグメント、第2のコイルセグメント、第2の非コイルセグメントまたは一つ以上の他のコイルセグメントまたは非コイルセグメントの少なくとも一つの物理的配置によって提供することができる。]
[0098] 図11Bは、埋込型遠隔測定回路を使用して埋込型アンテナを駆動し、第1の特定の動作周波数範囲または第2の特定の動作周波数範囲の少なくとも一方を使用して情報を電磁的に無線伝送することを含むプロセス1101の例を一般的に示す。] 図11B
[0099] 1110では、埋込型アンテナは埋込型遠隔測定回路を使用して駆動できる。一例において、埋込型遠隔測定回路はサイズおよび形状などを人または動物の体に埋め込めるように構成された遠隔測定回路、例えば埋込型遠隔測定回路115またはその他の埋込型遠隔測定回路を含むことができる。]
[0100] 一例において、埋込型遠隔測定回路は埋込型導電性または非導電性ハウジング、例えば埋込型アセンブリまたはサイズおよび形状などを人または動物の体に埋め込めるように構成されたその他のハウジング内に収容できる。ある例では、埋込型アンテナは埋込型ハウジングの外部に設置することができる。]
[0101] 1115では、埋込型アンテナと外部遠隔測定モジュールアンテナとの間で、第1の特定の動作周波数範囲または第2の特定の動作周波数範囲の少なくとも一方を使用して情報を電磁的に無線伝送できる。]
[0102] 図12は、コイルセグメントを有するアンテナの平面における正規化された第1の放射
パターン1210と、コイルセグメントを有しないアンテナの同様の第2の放射パターン
1220との比較の例を一般的に示す。一例においてこの平面は2本の直交軸、すなわち第1の軸1201Aと第2の軸1201Bによって定義できる。この例では最も外側の輪1205Aはアンテナの最大放射に対応する値0dB(例えば最大アンテナ放射が起こる方向に対応する0dBを示すプロット上の位置)を表すことができる。第1の内側の輪1
205と第2の内側の輪1205Cは、それぞれ例えば−10dBおよび−20dBの相対的出力レベルを表すことができる。] 図12
[0103] 一例において、埋込型アンテナを含むIMDは埋込型アンテナの長軸に垂直な平面で心臓形放射パターン、例えば第1の放射パターン1210または第2の放射パターン1220を示すことができる。アンテナが導電性IMDハウジングの輪郭に従うと、放射出力が減少する影の領域が生じ得る(例えば第1の放射パターン1210または第2の放射パターン1220に示された窪み部または「ゼロ」エリア)。アンテナが導電性IMDハウジングから物理的にさらに離して配置されると、ハウジングによって引き起こされる影の効果は減少する。]
[0104] ある例では、IMDとのRF無線通信の信頼性を改善するために(例えば装置の向き、デッドスポットなどに起因する通信ドロップアウトを防ぐために)全方向性動作が所望され得る。全方向性はアンテナ指向性パラメータを用いて特徴づけることができる。指向性「D」は全方向にわたる平均放射出力に対する最大放射方向におけるピーク放射出力の比率として定義できる。ある例では、全方向性アンテナは0dB指向性(例えばピーク放射出力と平均放射出力が1対1)を示すことができる。]
[0105] 一例において、第2の放射パターン1220に対応する平均出力が第1の放射パターン1210に対応する平均出力より小さいことがある(パターン1210によって占められるエリアがパターン1220によって占められるエリアを包囲するため)。それゆえこの例では、第2の放射パターン1220に対応する指向性は第1の放射パターン1210に対応する指向性より大きいことがある。そのようなものとして、コイルセグメントを有するアンテナはより多くの全方向性パターン、例えば第2の放射パターン1220、または一般的に全方向により一様な放射を示すことができる。]
[0106] ある例では、一つ以上の物理的機構によってコイルセグメントを有するアンテナの指向性を低減し、関連する放射パターンの一様性を改善できる。例えばコイルセグメント自体が放射に寄与し、大部分のコイル巻線をアンテナの長軸と直交する(例えば垂直な)平面上にあることができる。この放射は「非照準」放射と呼ぶことができる。一例において、非照準放射はコイルセグメントの一つ以上の幾何パターン、例えばコイルピッチ、回転半径、導体断面などが波長より小さい(例えば波長より著しく小さい)場合に生じ得る。]
[0107] 一例において、コイルセグメントはアンテナの非コイルセグメントがより効率的に放射するのを許し、または可能にし、図10に示されているように多数の非コイルセグメントが例えばIMD上のコネクターブロック内の種々の位置から一緒に放射できる(例えば多くのアンテナの物理的長さはエネルギーを多数の軸において多数の位置で放射するために使用できる)。] 図10
[0108] 幾つかの例において、埋込型遠隔測定回路は送信器または受信器または送受信器として構成できる。一般的に埋込型アンテナと他の無線装置との間の双方向無線情報伝送に関連して記述される原理が、一方向無線情報伝送にも適用できる。相互依存性の物理的原理に従いアンテナ挙動は一般的に相互的である(例えば物理的に送信アンテナとして配置されたアンテナは同様の特性を有する受信アンテナとしても作用し得る)。]
[0109] 図7の例と同様の一例において、IMDハウジングの近傍のフィードラインはヘッダーの背面にRF接続をもたらすことができ、ヘッダーはIMDハウジングにつながれている。この例では、フィードラインはIMDハウジングの近傍にあるため、マイクロストリップとして機能できる。一例において第1のセグメントは垂直に上昇できる。この例では第1のセグメントは、例えば放射の水平面をカバーする1軸(例えばz軸)上に配置できる。一例においてヘッダーの上部にある第1のセグメントは、コイルセグメントにつながれる。ある例では、この位置は自由なまたは占有されていないスペースを含むヘッダー内の位置を表すことができ、またはそのような位置として選択されることができる。中間装荷アンテナ設計において、第2のセグメントはコイルセグメントにつながれ、第1軸とほとんど直交する第2軸でヘッダーの上部を横断できる。一例において、この位置はセグメントに対する最長の直線長さを生み出すことができる。一例において、第2のセグメントは、例えば放射の垂直面をカバーする1軸(例えばx軸)上に配置できる。この例では新しいアンテナを収容するためにヘッダーをわずかに拡張できるが、ある例では装置の内部、上または外部に他の特別のアンテナ構造が必要とされない(例えばIMDハウジングの外部、ヘッダーの外部など)。]
[0110] 上記の詳細な説明は、この詳細な説明の一部をなす添付の図面の参照を含む。図面は、本発明の実施を可能にする具体的な実施形態を例示する。これらの実施形態はここでは「例」とも呼ばれる。そのような例は図示および説明された要素以外の要素を含むことがある。しかしながら本発明者は、図示および説明された要素のみ与えられている例も考察の対象とする。]
[0111] この明細書で言及されたすべての出版物、特許および特許文書は、参照によりその全体が個々に記載された如くにこれに組み込まれる。この明細書と参照により組み込まれた文書との間で使用法に不一致がある場合は、組み込まれた参照の使用法はこの明細書の使用法の補足と見なされ、この明細書の使用法に準拠する。]
[0112] この明細書では特許文書で通例のように「一つ」または「一つの」という用語を使用する場合は一つ以上を含み、「少なくとも一つの」または「一つ以上の」という例もしくは使用法にかかわりない。この明細書で「または」という語は排他的ではない「または」を意味するために用いられ、別途指示のない限り「AまたはB」は「AであるがBではない」「BであるがAではない」および「AおよびB」を含む。以下の特許請求項において「含む」(including)および「ここで」in whichという語は、それぞれ
「備える」(comprising)および「ここに」(wherein)という語の同等の平易な英語として使用される。また、以下の特許請求項において「含む」および「備える」という語は制限がない。すなわちそのような語の後で列記されるもの以外の要素を含むシステム、装置、物品、プロセスも、当該請求項の範囲に含まれるものと見なされる。さらに以下の特許請求項において、「第1の」、「第2の」および「第3の」などの用語は単に標識として用いられ、それらの対象物に数値上の要求を課すことを意図するものではない。]
[0113] 上記の説明は例示であり、制限を意図したものではない。例えば上記の例(それらの一つ以上の態様)は互いに組み合わせて使用できる。上記の説明を再検討した当業者が想到する他の実施形態も使用できる。要約は米国特許法施行規則1.72条(b)項に従い、読者が
技術的開示内容の要点を素早く確認できるように提供されている。要約は特許請求の範囲または意味を解釈または制限するために使用されないという理解のもとで提出される。また、上記の詳細な説明において、開示内容を簡素化するために種々の特徴をグループにまとめることができる。しかしこれはいずれかの請求項にとって請求されない開示特徴が本質的であることを意図するものと解釈されるべきではない。むしろ、本発明の要旨は、特
定の開示された実施形態のすべての特徴より少数の特徴に存在する。従って、以下の特許請求の範囲は、本発明の実施形態の詳細な説明に組み込まれ、各請求項は個別の実施形態として自立している。本発明の範囲は付属の特許請求の範囲、およびこれらが権利を有する等効物の全範囲を参照して決定されるべきである。]
权利要求:

請求項1
埋込型遠隔測定回路と、該埋込型遠隔測定回路に電気的に接続された埋込型アンテナと、を含むシステムであって、前記埋込型アンテナは、第1の非コイルセグメントと、該第1の非コイルセグメントに取り付けられた第1のコイルセグメントと、を含み、前記埋込型アンテナは、第1の特定の動作周波数範囲と第2の特定の動作周波数範囲とを使用して情報を電磁的に無線伝送するように構成されており、前記第1の特定の動作周波数範囲および前記第2の特定の動作周波数範囲が、少なくとも一部において、前記第1の非コイルセグメントに対する前記第1のコイルセグメントの物理的配置によって設定されるシステム。
請求項2
前記埋込型アンテナは、前記第1のコイルセグメントに取り付けられた第2の非コイルセグメントを含み、前記第1および第2の特定の動作周波数範囲が、少なくとも一部において、前記第1のコイルセグメントおよび前記第1の非コイルセグメントに対する前記第2の非コイルセグメントの物理的配置によって設定される請求項1に記載のシステム。
請求項3
前記埋込型アンテナは、前記第2の非コイルセグメントに取り付けられた第2のコイルセグメントを含み、前記第2の非コイルセグメントは、前記第2のコイルセグメントと前記第1のコイルセグメントとの間に配置されており、前記第1の特定の動作周波数範囲および前記第2の特定の動作周波数範囲が、少なくとも一部において、前記第1のコイルセグメント、前記第1の非コイルセグメントおよび前記第2の非コイルセグメントに対する前記第2のコイルセグメントの物理的配置によって設定される請求項1または2に記載のシステム。
請求項4
前記第1の特定の動作周波数範囲の中心にある第1の中間帯域周波数は、前記第2の動作周波数の中心にある第2の中間帯域周波数から少なくとも1オクターブだけずれている請求項1から3までのいずれか一項に記載のシステム。
請求項5
第1および第2の特定の動作周波数範囲は、(1)約402MHzから約405MHzまで及ぶ埋込型医療用データ伝送システム(MICS)用帯域、(2)約862MHzから約870MHzまで及ぶ短距離無線機器(SRD)用帯域、(3)約902MHzから約928MHzまで及ぶ第1の医療科学産業(ISM)用帯域、および(4)約2400MHzから約2500MHzまで及ぶ第2のISM用帯域、のうち少なくとも一つを含むリストから選択されている請求項1から4までのいずれか一項に記載のシステム。
請求項6
前記埋込型アンテナの最長の物理的直線寸法が、生体媒質内の前記埋込型アンテナの最長の特定の動作波長の4分の1に等しいか、それより小さい請求項1から5までのいずれか一項に記載のシステム。
請求項7
前記埋込型アンテナが、前記第1および第2の動作周波数範囲の少なくとも一方で示す放射効率は、前記第1のコイルセグメントが同様の長さの非コイルセグメントによって置き換えられたときに得られるであろう放射効率よりも高い請求項1から6までのいずれか一項に記載のシステム。
請求項8
前記第1の非コイルセグメントに対する前記第1のコイルセグメントの物理的配置は、生体媒質内の前記埋込型アンテナが、前記第1および第2の動作周波数範囲の少なくとも一方に対する前記埋込型遠隔測定回路の出力インピーダンスとの共役整合を近似するように構成されている請求項1から7までのいずれか一項に記載のシステム。
請求項9
前記埋込型遠隔測定回路は、前記埋込型アンテナに接続されたインピーダンス整合要素を含んでおり、前記第1のコイルセグメントは、前記整合要素が不連続性誘導子を含むことを要することなく、前記埋込型遠隔測定回路を誘導的に装荷するように構成されている請求項1から8までのいずれか一項に記載のシステム。
請求項10
前記埋込型アンテナが前記第1および第2の動作周波数範囲の少なくとも一方で示す指向性は、前記第1のコイルセグメントが同様の長さの非コイルセグメントによって置き換えられたときに得られるであろう指向性よりも少ない請求項1から9までのいずれか一項に記載のシステム。
請求項11
人または動物の体に埋め込むためのサイズと形状に整えた埋込型ハウジングを含み、該埋込型ハウジングは導電材料を有し、前記埋込型遠隔測定回路の少なくとも一部を収容し、前記導電材料は埋込型遠隔測定回路に電気的に接続されており、さらに人または動物の体に埋め込むためのサイズと形状に整えた埋込型誘電性隔室を含み、該埋込型誘電性隔室は前記埋込型アンテナの少なくとも一部を収容し、前記埋込型誘電性隔室はハウジングとつながれている請求項1から10までのいずれか一項に記載のシステム。
請求項12
外部遠隔測定モジュールは外部アンテナと、該外部アンテナに電気的に接続された外部遠隔測定回路とを含んでおり、埋込型アンテナと前記外部アンテナは無線接続されており、前記外部アンテナは、前記第1または第2の特定の動作周波数範囲の少なくとも一方を使用して前記埋込型医療アセンブリと前記外部遠隔測定モジュールとの間で情報を電磁的に無線伝送するように構成されている請求項1から11までのいずれか一項に記載のシステム。
請求項13
前記第1のコイルセグメントの最長の直線寸法は、前記第1の非コイルセグメントの最長の直線寸法に等しいか、それより短い請求項1から12までのいずれか一項に記載のシステム。
請求項14
埋込型アンテナを使用して第1の特定の動作周波数範囲および第2の特定の動作周波数範囲で情報を電磁的に無線伝送することを含み、前記埋込型アンテナは、第1の非コイルセグメントと、該第1の非コイルセグメントに取り付けられた第1のコイルセグメントと、を含んでおり、前記第1の特定の動作周波数範囲および前記第2の特定の動作周波数範囲が、少なくとも一部において、前記第1の非コイルセグメントに対する前記第1のコイルセグメントの物理的配置によって設定される方法。
請求項15
前記埋込型アンテナは前記第1のコイルセグメントに取り付けられた第2の非コイルセグメントを含み、前記埋込型アンテナを使用して情報を電磁的に無線伝送することが第2の非コイルセグメントを使用することを含んでおり、前記第1の特定の動作周波数範囲および前記第2の特定の動作周波数範囲が、少なくとも一部において、前記第1のコイルセグメントおよび前記第1の非コイルセグメントに対する前記第2の非コイルセグメントの物理的配置によって設定される請求項14に記載の方法。
請求項16
前記埋込型アンテナは前記第2のコイルセグメントに取り付けられた第2の非コイルセグメントを含み、該第2の非コイルセグメントは前記第2のコイルセグメントと前記第1のコイルセグメントとの間に配置されており、前記埋込型アンテナを使用して情報を電磁的に無線伝送することが前記第2のコイルセグメントを使用することを含んでおり、前記第1の特定の動作周波数範囲および前記第2の特定の動作周波数範囲が、少なくとも一部において、前記第1のコイルセグメント、前記第1の非コイルセグメントおよび前記第2の非コイルセグメントに対する前記第2のコイルセグメントの物理的配置によって設定される請求項15に記載の方法。
請求項17
情報を電磁的に無線伝送することが、第1の中間帯域周波数を有する前記第1の特定の動作周波数範囲および第2の中間帯域周波数を有する前記第2の特定の動作周波数範囲を使用することを含んでおり、前記第1の中間帯域周波数が前記第2の中間帯域周波数から少なくとも1オクターブだけずれている請求項14から16までのいずれか一項に記載の方法。
請求項18
情報を電磁的に無線伝送することが、前記第1の非コイルセグメントの最長の直線寸法に等しいか、それより短い第1のコイルセグメントの最長の直線寸法を有する前記埋込型アンテナを使用することを含む請求項14から17までのいずれか一項に記載の方法。
請求項19
前記埋込型遠隔測定回路を使用して生体媒質内の前記埋込型アンテナの共役インピーダンスを実質的に整合することを含む請求項14から18までのいずれか一項に記載の方法。
請求項20
実質的に整合することがコイルセグメントを使用して前記埋込型遠隔測定回路を誘導的に装荷することを含む請求項19項に記載の方法。
請求項21
前記埋込型遠隔測定回路を使用して前記埋込型アンテナを駆動することを含んでおり、前記埋込型遠隔測定回路は埋込型導電性ハウジング内に収容され、前記アンテナは導電性ハウジングの外部に配置されており、情報を電磁的に無線伝送することが、前記第1の特定の動作周波数範囲または前記第2の特定の動作周波数範囲の少なくとも一方を使用して前記埋込型アンテナと前記外部遠隔測定モジュールアンテナとの間で情報を電磁的に無線伝送することを含む請求項14から20までのいずれか一項に記載の方法。
类似技术:
公开号 | 公开日 | 专利标题
EP3142743B1|2020-07-29|Remote rf power system with low profile transmitting antenna
US9211416B2|2015-12-15|Charging system for an implantable medical device employing magnetic and electric fields
Kiourti et al.2014|Implantable and ingestible medical devices with wireless telemetry functionalities: A review of current status and challenges
US8688226B2|2014-04-01|MRI-safe high impedance lead systems
US8364286B2|2013-01-29|Lead electrode for use in an MRI-safe implantable medical device
JP2018110892A|2018-07-19|移植式導線
EP2198477B1|2017-07-05|Maximizing power yield from wireless power magnetic resonators
US8731685B2|2014-05-20|Implantable lead having a variable coil conductor pitch
US6917833B2|2005-07-12|Omnidirectional antenna for wireless communication with implanted medical devices
Skrivervik2013|Implantable antennas: The challenge of efficiency
Sánchez-Fernández et al.2010|Dual-band microstrip patch antenna based on short-circuited ring and spiral resonators for implantable medical devices
US7363087B2|2008-04-22|Compact conformal antenna for a medical telemetry system
US7317946B2|2008-01-08|Telemetry antenna for an implantable medical device
AU2008351351B2|2012-01-19|Printed circuit board communication coil for use in an implantable medical device system
US7486184B2|2009-02-03|Coaxial cable antenna for communication with implanted medical devices
JP5840774B2|2016-01-06|埋込可能な医学治療送達装置のファーフィールド放射電力供給
US7072718B2|2006-07-04|Antenna systems for implantable medical device telemetry
EP2370153B1|2013-04-10|Electrical stimulation leads having rf compatibility and methods of manufacture
US8050771B2|2011-11-01|Phased array cofire antenna structure and method for operating the same
US7467014B2|2008-12-16|Compact and conformal telemetry antennas for implantable medical devices
Xia et al.2009|Performances of an implanted cavity slot antenna embedded in the human arm
US8478423B2|2013-07-02|Insulator layers for leads of implantable electric stimulation systems and methods of making and using
US9399143B2|2016-07-26|Antenna for implantable medical devices formed on extension of RF circuit substrate and method for forming the same
Chow et al.2009|Evaluation of cardiovascular stents as antennas for implantable wireless applications
EP2152354B1|2012-07-25|Implantable system having a conductive body and conductive body contact
同族专利:
公开号 | 公开日
WO2009111012A1|2009-09-11|
EP2263283B1|2014-07-02|
US8588924B2|2013-11-19|
EP2263283A1|2010-12-22|
US20090228075A1|2009-09-10|
AU2009220201B2|2013-06-20|
AU2009220201A1|2009-09-11|
JP5236752B2|2013-07-17|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
2011-09-28| A977| Report on retrieval|Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110928 |
2011-10-05| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111004 |
2011-12-23| A601| Written request for extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20111222 |
2012-01-06| A602| Written permission of extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20120105 |
2012-02-17| RD04| Notification of resignation of power of attorney|Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120216 |
2012-04-05| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120404 |
2012-07-04| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120703 |
2012-10-04| A601| Written request for extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20121003 |
2012-10-12| A602| Written permission of extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20121011 |
2012-11-01| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121031 |
2013-02-28| TRDD| Decision of grant or rejection written|
2013-03-06| A01| Written decision to grant a patent or to grant a registration (utility model)|Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130305 |
2013-04-04| A61| First payment of annual fees (during grant procedure)|Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130327 |
2013-04-05| R150| Certificate of patent or registration of utility model|Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5236752 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
2013-04-08| FPAY| Renewal fee payment (event date is renewal date of database)|Free format text: PAYMENT UNTIL: 20160405 Year of fee payment: 3 |
2016-04-12| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2017-04-11| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2018-04-03| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2019-04-02| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2020-03-31| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
优先权:
申请号 | 申请日 | 专利标题
[返回顶部]